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Abstract: Farm dams are a ubiquitous limnological feature of agricultural landscapes worldwide. 

While their primary function is to capture and store water, they also have disproportionally large 

effects on biodiversity and biogeochemical cycling, with important relevance to several Sustainable 

Development Goals (SDGs). However, the abundance and distribution of farm dams is unknown in 

most parts of the world. Therefore, we used artificial intelligence and remote sensing data to address 

this critical global information gap. Specifically, we trained a deep learning convolutional neural 

network (CNN) on high-definition satellite images to detect farm dams and carry out the first 

continental-scale assessment on density, distribution and historical trends. We found that in 

Australia there are 1.765 million farm dams that occupy an area larger than Rhode Island (4678 km2) 

and store over 20 times more water than Sydney Harbour (10,990 GL). The State of New South Wales 

recorded the highest number of farm dams (654,983; 37% of the total) and Victoria the highest overall 

density (1.73 dams km−2). We also estimated that 202,119 farm dams (11.5%) remain omitted from 

any maps, especially in South Australia, Western Australia and the Northern Territory. Three 

decades of historical records revealed an ongoing decrease in the construction rate of farm dams, 

from >3% per annum before 2000, to ~1% after 2000, to <0.05% after 2010—except in the Australian 

Capital Territory where rates have remained relatively high. We also found systematic trends in 

construction design: farm dams built in 2015 are on average 50% larger in surface area and contain 

66% more water than those built in 1989. To facilitate sharing information on sustainable farm dam 

management with authorities, scientists, managers and local communities, we developed 

AusDams.org—a free interactive portal to visualise and generate statistics on the physical, 

environmental and ecological impacts of farm dams. 
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1. Introduction  

Farm dams are a ubiquitous feature of agricultural landscapes and a cornerstone of 

farming and industrial practices. These artificial water bodies are relatively small (102–105 

m2) and collect water for livestock and irrigation, protect against fires and more [1,2]. 

Escalating water prices, diminishing rainfalls and increasing temperatures are stimulating 

the development of new farm dams, increasing worldwide at up to 60% per annum to 

respond to increasing pressure on agricultural production [3]. While often ignored from 

inventories, recent assessments showed that small (100–1000 m2) aquatic ecosystems 

dominate the areal extent of continental waters worldwide with substantial contributions 

to global cycles [3]. 
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It is increasingly more apparent that the accumulation of farm dams can have 

intensifying effects on biodiversity [4,5], nutrient cycling [6], soil erosion [7], biological 

invasions [8] and other biogenic processes. Recently, farm dams have also been recognised 

as significant sources of greenhouse gas to the atmosphere, ranking among the highest 

emitters per unit area among freshwater systems [9,10]. As a result, the 2019 refinement 

of IPCC Guidelines recommends accounting for farm dams in national carbon inventories. 

Hence, developing “greener” solutions for managing farm dams can have essential 

contributions to many of the Sustainable Development Goals (SDGs) recently identified 

by the United Nations, including reduce climate change, preserve biodiversity and 

increasing water security. However, many countries lack the most basic information on 

farm dams, such as their density and location, hindering our understanding of how to 

manage their environmental and ecological effects [11]. 

Remote sensing is a cost-effective approach to map surface water at large scales. Deep 

learning convolutional neural networks (CNN) are among the most advanced algorithms 

for image analysis and their popularity in remote sensing is rising rapidly [12]. By 

extracting features at different hierarchical levels, CNN have tremendous potential to 

improve accuracy, precision and generalisation to detect water in satellite images over 

alternative machine learning techniques [12–14]. For example, CNN algorithms could 

accurately identify water bodies despite the presence of clouds, ice, snow, glare and 

shadows [12–15]. However, the computer-intensive nature of CNN still represents a 

substantial challenge. Indeed, most previous implementations for surface water detection 

remain either at low definition (e.g., Landsat or Sentinel data with 10–30 m spatial 

resolution in [12,14–16]) or small/medium geographic scales (e.g., urban areas in [13,17]). 

Australia is a large and dry country, covering 5.6% of the world’s landmass but only 

containing 1% of its total freshwater [18,19]. Water is, therefore, a limited resource and a 

critical policy concern [20]. In Australia, there has never been a formal assessment of farm 

dam densities or total counts, with Federal authorities and scientific articles reporting 

ballpark estimates from “half a million” [4], to “over two million” [21,22], to “several 

million” [23]. The Australian Government (i.e., Geoscience Australia) has previously 

invested in a Water Observation from Space program [24]. However, the minimum 

detection is limited to water bodies larger than half a soccer field (50 × 50 m), which 

excludes the majority of farm dams. The only nation-wide dataset of Australian farm 

dams is by Geoscience Australia [25,26], but only a subset of dams features in this map. 

For example, the number of farm dams reported by Geoscience Australia for the State of 

Tasmania (N = 726) is 1% of those expected by local authorities (N = 61,897—see table S1). 

We present the first continental-scale assessment of density, distribution, water 

capacity and historical trends of farm dams. First, we compiled all available information 

from Federal, State and local authorities on Australian farm dams and similar artificial 

water bodies (e.g., irrigation ponds, sewage ponds, settling ponds—see table S1). Second, 

we used CNN to detect farm dams from satellite images to account for different levels of 

uncertainty among data sources. Third, we analysed historical trends in the rate of 

development of new farm dams from each State and Territory in Australia. 

2. Materials and Methods  

2.1. Mapping Farm Dams in Australia 

Please refer to Table S1 for details on curator, spatial coverage, temporal coverage, 

sample size, data type, filters, access date and source for all datasets used in this study. 

Briefly, we sourced data on 1,694,675 farm dams from (1) the Surface Water map by 

Geoscience Australia (N = 934,381), (2) the Department of Environment, Land, Water & 

Planning of the Victorian Government (N = 429,398), (3) the Department for Environment 

and Water in South Australia (N = 105,361), (4) the Department of Primary Industries and 

Regional Development in Western Australia (N = 162,785), (5) the Department of Primary 

Industries, Parks, Water and Environment in Tasmania (N = 61,897) and (6) the 

Environment & Planning Directorate in the Australian Capital Territory (N = 853). For 

large farm dams (>105 m2 in surface area), we removed those that appeared of natural 
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origins (i.e., complex shapes, jiggered borders) by retaining only those with simple and 

regular shapes, calculated as circularity (τ ὃὶὩὥ“ ὖὩὶὭάὩὸὩὶ) above 0.5. For 

farm dams reported as points (as opposed to polygons), we used the minimum detection 

area for polygons noted in the metadata, and we calculated the perimeter assuming 

circular shape. We ensured there were no repeated or overlapping entries in our data. 

Finally, we developed a calibration curve to estimate water capacity (unit: ML) from the 

surface area (unit: m2) by compiling data for 558 farm dams across Victoria, Queensland 

and South Australia [27–29] (model: log10(Water Capacity) = – 3.593 [– 3.707; – 3.479] + 

1.237 [1.204; 1.270] × log10(Surface Area); R2 = 0.91; F1,556 = 5359.6, p < 0.001; see Figure 1). 

2.2. Quantifying Uncertainty 

To account for different uncertainties among jurisdictions, we developed an 

independent water detection algorithm that we could use to benchmark each map. 

Specifically, we used our algorithm as ground truth, and we derived statistical models to 

estimate the probabilities of false positive (i.e., entries that are wrongly classified as a dam, 

or commission error) and false negative (i.e., farm dams that failed to be identified, or 

omission error) in each State and Territory in Australia. 

2.2.1. Water Detection Using Deep Learning Convolutional Neural Networks 

We trained a deep learning convolutional neural network (CNN) to detect farm dams 

using the Python-based open-source library “fastai” version 1 

[https://github.com/fastai/fastai; 30]. We downloaded the most recent (typically between 

2018 to 2019) RGB satellite image of 7,362 Australian locations from three different 

repositories (i.e., http://ecn.t3.tiles.virtualearth.net, https://api.mapbox.com and 

https://server.arcgisonline.com). We sampled 75% of these images from our dam dataset 

and the remaining 25% from randomly selected locations within Australia. These satellite 

images had varying sizes and aspect ratios, and the pixel resolution was mostly 0.45 m, 

but when unavailable, we also used lower resolutions (e.g., 1–5 m). 

To avoid manual labelling of all 7362 downloaded images, we took a random 

subsample of 400 images and labelled them into “dam” or “not dam” and we trained a 

classification model on the labelled data. We utilised transfer learning by initialising an 

ImageNet pre-trained ResNet34 model [30]. We applied an 80–20% split for training and 

validation datasets, respectively. To help generalise the model, we used data 

augmentation with the fastai get_transforms function [30] and the following arguments: 

“flip_vert = TRUE” to allow for vertical flipping of images, “max_lighting = 0.02” to limit 

overly exposing the images, “max_zoom = 1” to disable the zooming augmentation, and 

“to_fp16 = TRUE” to reduce the memory load on the graphical processing unit (GPU). We 

set the batch size to 300 images and trained the model with a learning rate of 10–3 for ten 

epochs. At epoch 5, we achieved an error rate of 0.1538 (15.38%) a validation loss of 0.4211 

and a training loss of 0.8287. We used the trained model to automatise the classification 

of 500 more images from the unlabelled training dataset, and we manually fixed any 

mistakes. We repeated this process of training, classification and checking until all of the 

7362 downloaded images were labelled. 

We trained our deep learning CNN on 7362 labelled images using the same 

parameters detailed above, and we achieved an error rate of 0.1195 (11.95%) with a 

training loss of 0.3462 and a validation loss of 0.2847. We further fine-tuned the model by 

unfreezing the entire model and training at a 10-fold lower learning rate (10−4). The final 

model achieved an accuracy of 94.8% (error rate of 5.2%) with a training loss of 0.1397 and 

a validation loss of 0.1446 with ten epochs (see confusion matrix in Figure S1). 

2.2.2. Correcting for False Positives 

Locations falsely classified as containing a dam (i.e., false positives, or commission 

error) act to overpredict the real number of dams in Australia. Therefore, we calculated 

the probability of false positives by using our deep learning CNN to analyse and validate 

ca. 2000 dams in each State and Territory sampled from our compiled database. To do so, 
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we downloaded RGB satellite imagery for each farm dam using the same three 

repositories mentioned above and combined their predictions to generate an outcome for 

each location (either “dam correctly verified” or “dam being a false positive”). 

We corrected our dataset for false positives using generalised linear models. We used 

the classification outcome from our deep learning CNN (binomial distribution) as the 

response variable, and we used the State or Territory identity (categorical), dam surface 

area (continuous), and their interaction as the covariates in the analysis. The rationale is 

that jurisdictions using outdated or low-definition satellite images to map water bodies 

will have a higher probability of miss-recording smaller dams (i.e., low reliability). We 

used our best-fitting statistical model (following Akaike information criterion [31]) to 

predict the reliability (i.e., probability of true positives) for each dam in our dataset. 

Finally, we corrected our data by removing all entries that recorded less than 75% 

reliability of being a true positive, which we verified to be an appropriate threshold to 

filter out the large majority of false positives. 

2.2.3. Correcting for False Negatives 

Undocumented farm dams (i.e., false negatives, or omission error) underestimate the 

real number of dams in Australia. We estimated the fraction of undocumented dams in 

each State and Territory by conducting an independent exploration using our deep 

learning CNN to analyse areas supposedly free of dams—following our compiled map of 

Australian farm dams (see Table S1). Given that the probability of encountering a dam by 

randomly sampling a site across the whole of Australia is very low, we maximised our 

sampling efforts by selecting only land types with high dam densities. To do so, we 

overlapped our compiled dataset of Australian dams with the 2016 Australian Land Use 

and Management Classification (version 8) [32] to identify the 33 land types with the 

highest dam densities (>2 dams km−2) in Australia (see Figure S2 for the list of these land 

types). Then, we randomly sampled locations in each State and Territory and downloaded 

RGB images (mostly from 2018 to 2019) at 0.5 m resolution from 

http://ecn.t3.tiles.virtualearth.net/. The number of investigated sites depended on the 

available sampling area at each combination of land use type by State/Territory and was 

typically between 11,000 to 30,000—although we could only sample fewer sites in the 

Northern Territory (N = 5,400) and the Australian Capital Territory (N = 62). In total, we 

analysed 124,510 RGB images across Australia and detected 5,105 farm dams (see Figure 

S3 for few examples of the farm dams identified by the deep learning CNN). We calculated 

the relative density of false negatives compared to the density of true positives to calculate 

a probability of false negatives per area for each land-use type in each State and Territory. 

Finally, we used the mean probability of false negatives across all land-use types to 

estimate the total number of undocumented dams in each State and Territory. 

As an example, suppose there are 100 dams documented for a specific land use type 

of 100 km2 in size (i.e., reported density of 1 dam per km2), from which five dams are 

removed because deemed false positives (i.e., less than 75% reliability of being a true 

positive; see Section 2.2.2). Hence, the farm dam density for this hypothetical land use 

after correcting for false positives is (100–5/100 = ) 0.95 dam per km2. Were we to find 1 

undocumented dam by searching 10 km2 of randomly sampled locations, we would infer 

a density of undocumented dams of (1/10 =) 0.1 dam per km2. In this case we would 

conclude that undocumented dams in this land use type are (0.1/0.95 =) 10.5% of the 

documented dams. By repeating these operations across the 33 land-use types, we could 

calculate an overall percentage of false negatives relative to true positives, which we used 

to estimate the overall number of documented + undocumented dams in each State or 

Territory. Our approach assumes that the probability of a dam being undocumented is 

constant across all land use types. This assumption is reasonable when the same mapping 

technique is used across the landscape, which is the case for all maps used in this study 

(see Table S1). Finally, we manually traced the surface area of 221 randomly selected 

unreported dams to estimate the median surface area (m2) of undocumented dams in each 



Remote Sens. 2020, 12, x  5 of 16 

 

State and Territory (Figure S2), which we used to estimate the total surface area and water 

content in documented + undocumented dams. 

2.2.4. Compounding Multiple Uncertainties 

We quantified the overall uncertainty for all our metrics using bootstrapping 

procedures [33,34]. Specifically, we created 1000 simulated datasets by sampling 

observations with replacement. For each simulated dataset, we repeated the steps detailed 

above to calculate all statistics for documented + undocumented dams, including the 

uncertainty in estimating the water capacity of a farm dam from its surface area (see 

Figure 1). Finally, we extracted the median and the 95% confidence intervals from the 

obtained bootstrap distribution of each estimate. 

2.3. Historical Trends 

Please refer to Figure S4 for a step-by-step graphical diagram of this analysis. We 

used data from the Water Observations from Space (WOfS) to quantify historical changes 

in surface water in Australia from 1988 to present [24]. The WOfS uses Landsat 5 and 

Landsat 7 satellite images to detect surface water at a 30 m grid size across Australia at an 

approximate bi-weekly frequency. The Digital Earth Australia Waterbodies elaborates 

data from WOfS to provide 28 years of bi-weekly time series of relative wet surface area 

for 300,000 waterbodies across Australia. First, we filtered for farm dams by extracting the 

water bodies that overlapped with our farm dam database (see Section 2.1). Among the 

overlapping farm dams, we randomly selected ca. 1000 from each State and Territory—

excluding the Northern Territory that had too few documented dams. For each selected 

farm dam, we used data from WOfS to compile bi-weekly time series of the relative 

number of pixels inside the farm dam area that were identified as water from 1988 to 2015. 

Then, we recorded the year when the WOfS time series started to consistently report water 

in at least 25% of the farm dam area, which was taken as the year when the farm dam was 

created. Finally, we calculated the relative and absolute cumulative distribution of farm 

dams over time in each State and Territory and used linear models to analyse historical 

trends (see Figure S4 for graphical diagram of the methods). 

2.4. Statistical Analyses 

We used Python [35] and fastai [30] for developing the deep learning CNN. We used 

R [36] for all statistical analyses, using packages sf [37] and raster [38] for data 

manipulation; ggplot2 [39], rasterVis [40] and cowplot [41] for plotting. We also used R 

for designing the website AusDams.org, using Shiny [42], Leaflet [43], Plotly [44] and 

using Joe Cheng’s Superzip template (https://shiny.rstudio.com/gallery/superzip-

example.html). 

3. Results 

3.1. Reported Farm Dams 

There were 1,694,675 farm dams reported by regional and Federal authorities in 

Australia. The majority of farm dams were in New South Wales (37%), Victoria (26%), 

Queensland (17%) and Western Australia (10%; Table S1). Around three-quarters of 

Australia recorded at least one dam per 2000 km2, but the typical density near urban 

centres was 2–5 farm dams per km2 (Figure 2). The average size of a dam was ca. 1000 m2, 

ranging from 100 m2 to >105 m2 (Figure 3). 

3.2. Data Verification 

Our results showed that reports of larger (>1000 m2) farm dams were reliable, with a 

probability of a successful verification ranging from 78  1.2% in Queensland to 93  

1.5% (S.E.) in Western Australia (Figure 3). Instead, reports of smaller farm dams (<100 

m2) were only verified in 34  ρσ% (in Northern Territory) to 74  13% S.E. (in Western 

Australia) of cases (Figures 3 and S5). Overall, we corrected for false positives in the data 
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by removing 43,295 farm dams (2.55% of the total), ranging from 54 (2.5%) in the 

Australian Capital Territory to 22,949 (5.18%) in Victoria. The State with the largest 

percentage of false positives was Tasmania (13%, Figure 3 and S5). Notice that in the 

Northern Territory there were too few documented farm dams to carry out a formal 

probability assessment of false positives, so we assumed 100% of the 2040 documented 

dams were successfully verified. 

3.3. Undetected Farm Dams 

We estimated that 202,119 farm dams remain undetected in Australia. Farm dams in 

Queensland, New South Wales, Victoria and the Australian Capital Territory contributed 

to 80% of all documented farm dams and recorded the lowest percentages (<7%) of 

undetected dams, which corresponded to 94,266 omitted farm dams across the four 

regions (Figure 4). We recorded higher percentages of undetected farm dams in South 

Australia (11%), Tasmania (19%) and Western Australia (28%), for an estimated 94,108 

omitted farm dams (Figure 4). Finally, the Northern Territory recorded the highest 

percentage (87%) of omitted farm dams (Figure 4). 

3.4. Total farm Dams in Australia 

Overall, we estimated that in 2018/2019 there were 1,765,152 farm dams (95% C.I.: 

1,668,319 to 1,907,440) in Australia. New South Wales recorded the highest number of 

farm dams (654,983, 37% of the total) and Victoria the highest overall density (1.73 dams 

km−2; Figure 5 A, B). Conversely, the Australian Capital Territory recorded the lowest dam 

counts (2,144, 0.01% of the total) and the Northern Territory the lowest dam density 

(0.0026 dams km−2). In total, farm dams in Australia occupied an area of 4,678 km2 (95% 

C.I.: 4,388 to 5,245). 

In all regions, the large majority (>89%) of farm dams were documented (see green 

bars in Figure 5D), except in Tasmania (81%), Western Australia (72%) and in the Northern 

Territory (13%; see red bars in Figure 5D). Finally, false positives were generally a small 

fraction (<5%) of the total number of documented dams, with only Tasmania recording a 

relatively high value (10%; see blue bars in Figure 5D). 

3.5. Total Water Stored in Dams 

We estimated that the total water stored in Australian farm dams was 10,990 GL (95% 

C.I.: 9,434 to 13,473; Figure 5C). New South Wales recorded the greatest amount of water 

stored in farm dams (4,266 GL, 38.8% of the total), followed by Queensland (2720 GL, 25%) 

and Western Australia (1,555 GL, 14%; Figure 5C). Overall, undetected farm dams stored 

1,372 GL of water (12.5% of the total). Importantly, water from undetected farm dams 

contributed to 95.9% (59 GL) of the total stored water in the Northern Territory, 31% (189 

GL) in South Australia and 24% (372 GL) in Western Australia.  

3.6. Historical Trends 

The years between 1988 and 2000 recorded the fastest increases in farm dam numbers 

across all regions (>2% per annum; see steep lines in Figure 6 before the vertical dashed 

line). In these years, the Australian Capital Territory recorded the fastest rate of growth 

(3.2% per annum), and New South Wales registered the highest number of new farm dams 

built per year (13,948; Figures 6 and S6). These rates correspond to farm dams doubling 

in number every 13 to 32 years. 

After 2000, the development of new farm dams slowed down across Australia to 

<1.2% per annum, except in the Australian Capital Territory where rates remained 

relatively high (2.5% per annum; see lines in Figure 6 after vertical dashed line). After 

2000, Queensland recorded the highest number of new farm dams built each year (3,710), 

followed by New South Wales (2,338) and Victoria (2,181; see Figure S6 for all absolute 

and relative rates). However, we also detected a significant increase in farm dam size over 

time (Figure S7). Specifically, farm dams built in 2015 were on average 50.7% larger than 

those built in 1988—regardless of the State or Territory (i.e., no sign. interaction between 
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region and year of construction). This increase in surface area corresponded to a 66% 

increase in water capacity (Figure S7). 

 

 

Figure 1. Calibration curve and model coefficients [ 95% confidence intervals] to estimate the water capacity of a farm 

dam from its surface area (R2 = 0.91, F1,556 = 5359.6, p < 0.001). We compiled data from three Australian studies (N = 558): 

farm dams in South Australia were sourced from McMurray (2004), those in Queensland from Sinclair Knight Merz (2012) 

and those in Victoria from Lowe et al. (2005). Water capacity was calculated using GIS techniques and Light Detection 

And Ranging (LIDAR) data. Surface area was calculated from satellite images. The range of surface areas covered in this 

relationship (from 102 to 105) is representative of the full range found among Australian farm dams (cf. Figure 3). The 

bootstrapping methods to estimate the statistics on total water capacity in Australian farm dams (Figure 5C) included the 

uncertainty in this relationship. 
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Figure 2. Distribution of documented dams in each Australian State and Territory, compiled from the maps in Table S1. 

The colour represents density (dams km−2) and total counts (dams per hexagon), with empty hexagons indicating no 

reports of dams in the area. 
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Figure 3. Dam detection reliability as a function of geographic region and dam surface area (m2). Histograms and x-axes 

represent the distribution of all documented dam sizes, while faceting represent States and Territories in Australia (with 

sample size reported in the facet titles). Lines ( 95% C.I) indicate the probability of a reliable entry extracted from the 

best-fitting generalised linear model following Akaike Information Criterion. Low probabilities indicate high frequencies 

of wrongly classified dams (false positives), whereas high probabilities indicate high frequencies of dams correctly 

documented (true positives). We omitted data for the Northern Territories because there were too few documented dams 

to carry out a formal probability assessment. 
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Figure 4. Frequency of undocumented farm dams (false negatives) encountered in the 33 agricultural land types with the 

highest reported dam densities (>2 dams km−2) across Australia (see Figure S2 for the names of the land use categories 

used in this analysis). We searched for dams by randomly sampling sites among these land use types. The number of 

searched sites in each region is reported in the facet title. Horizontal lines indicate overall percentages of detected dams 

across all land use types over the total (  bootstrapped 95% confidence intervals). Missing columns indicate land use 

categories that are absent from the State or Territory. 
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Figure 5. Final statistics for Australian farm dams in each State and Territory. (A ) Total counts, (B) overall densities and 

(C) cumulative water capacities (GL) are calculated after removing unreliable entries (false positives) and adding expected 

undocumented dams (false negatives). The size and water capacity of undocumented dams were calculated based on 

manual tracing (Figure 2). Grey bars indicate medians, while error bars represent the bootstrapped 95% confidence 

intervals. (D ) Relative contributions of false positives and false negatives compared to the total documented dams in each 

State and Territory. 

 

 

Figure 6. Historical trends in dam density between the years 1988 and 2015 in each State and Territory of Australia. The 

embedded table shows annual rates of proportional increases in dam densities, both before 2000 and after 2000 (dashed 

line). There were too few data to calculate historical rates for dams in the Northern Territory. See Figure S6 for absolute 

and relative rates of annual increase for each region and Figure S7 for trends in farm dam size over time. 
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4. Discussion  

In 2018/2019 there were 1,765,152 farm dams in Australia, of which 202,119 (11% of 

the total) remained undocumented. Freshwater provides an essential service to 

Australia’s economy, with the total annual value of irrigated agriculture last estimated at 

AU$17.7 billion, mostly in Victoria ($4.9 billion), Queensland ($4.5 billion) and New South 

Wales ($4.4 billion) [45]. There are 9968 GL of water currently used in Australian 

agriculture, of which 13.3% comes from farm dams or tanks (1324 GL) [46]. Using the 

percentages of undocumented farm dams calculated here for Australia (12.5%), we can 

approximate that on average undocumented farm dams are associated with (AU$17.7 B 

 13.3%  12.5% =) AU$294 million of Australia’s revenue. This back-of-the-envelope 

calculation indicates that ensuring appropriate monitoring and management of farm 

dams across the country is likely to have important economic rewards, other than 

ecological and environmental benefits. 

Perhaps the most important reason for increasing investments into monitoring farm 

dams is water security [47]. We estimated that farm dams in Australia hold 10,990 GL and 

we showed where these freshwater reserves are. Trends in available freshwater are 

becoming of increasing concern under anthropogenic climate change. Climate change is 

reducing rainfall, increasing evaporation and intensifying extreme weather events and 

droughts [48]. In some area of Australia, growing-season rainfall have already declined 

by 14–20% since the 1990s [49,50]. Population growth will nearly double worldwide food 

consumption by 2050, and current water availabilities in Australia could fail to meet 

future demands [18]. We would therefore expect an overall reduction in the available 

water in farm dams, but there is no data to test this prediction. Hence, a promising next 

step would be to complement our study with satellite tools to track interannual trends in 

water availability within farm dams. 

Investing now in better monitoring techniques for farm dams is most cost-effective 

than ever. Specifically, we here found a monotonic decline in historical rates of dam 

development among Australian States and Territories: from 2–3.4% before 2000, to 0.5–

1.5% after 2000, to 0.05–0.8% after 2010. This decline is consistent with the 2003 Farm Dams 

Act that limited construction rates in South-East Australia [51]. However, we are unaware 

of any other policy intervention or natural event that could explain this nation-wide 

plateau, possibly indicating saturation of available space or farm dam demand—although 

we also found that on average modern farm dams are larger than older ones. Regardless 

of the underlying drivers, if this trend continues, dam numbers will nearly stabilise before 

2030, which means investing now into a national farm dam database would require fewer 

updates than in the past. 

There are several ways in which this work can support new research. For example, 

farm dams have unique properties that make them a hotspot for methane emissions—a 

greenhouse gas that is 34 times more potent than carbon dioxide [9,10,52]. Given 

Australia’s commitment to substantially reduce emissions by 2050, the contributions of 

farm dams to climate change must be monitored and regulated—as recommended by the 

2019 Refinement of IPCC Guidelines [53]. The dataset presented here on size and location 

of farm dams can help government agencies (e.g., Dept. of Agriculture, Water and the 

Environment) to include their greenhouse gas emissions in the Australian National 

Greenhouse Gas Inventory. As another example, our data can help manage biological 

invasions. In arid habitats, farm dams provide a refuge that pests can use as stepping-

stones to spread across the country (e.g., the cane toad Rhinella marina in north Australia; 

Letnic et al., 2015) [54]. Knowing where farm dams are can, therefore, inform on invasion 

fronts. Moreover, our map of farm dams could help to predict species richness and 

distribution across Australia [4,5], manage water quality [55,56], nutrient leaching [57] or 

sediment delivery [58,59]. 

5. Conclusions  

Human practices have created millions of artificial water bodies in rural areas across 

Australia, but we still lack basic information on their impacts on the environment. To 
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encourage future research on sustainable management of Australian farm dams, we 

created a free interactive website (www.AusDams.org) to share our results and analyses 

with the Government, farmers, scientists and the general community (Figure 7). We 

designed this portal to ensure maximum simplicity: the user only needs to navigate on a 

map to any area of Australia to generate tailored statistics, plots and tables on various 

aspects of farm dams (e.g., count, density, total surface area, size distribution, water 

capacity). Moreover, we incorporated in our farm dam statistics both false positives and 

false negatives, which can be important to inform where to prioritise new mapping efforts 

(Figure 7). Specifically, policymakers can decide to focus on the region with the highest 

number of omitted farm dams (Western Australia), or with the most significant 

percentage of omitted farm dams (Northern Territory), or with the highest overall 

agricultural value (New South Wales), or with the highest cost of water (Northern 

Territory). Our portal can also facilitate managing licenses or help choosing the location 

for new dams. To support all these applications, we are committed to keeping expanding 

the data in AusDam.org as they become available. 

 

Figure 7. The online guided user interface of AusDam.org. This example shows all dams (red dots) in the region near 

Esperance in Western Australia. The panel on the left allows the user to choose the variables to represent as point colour 

(e.g., the region of the map, data source) and as point size (e.g., surface area, perimeter, estimated water capacity) for each 

dam. The histogram shows expected counts (dots), documented dams (blue bars), and the expected false positives (orange 

bars), following all calculations presented in this study. The banner at the top summarises the overall statistics. The two 

tabs at the top presents the raw data (Data explorer) and information about the project and the methods (About). 

 

Supplementary Materials:  The following items are available online at www.mdpi.com/xxx/s1. 

Figure S1: Confusion matrix for farm dam detection with our deep learning CNN. Figure S2: The 

surface area of unreported dams used to estimate their median water capacity. Figure S3: Examples 

of undocumented farm dams that were identified with our deep learning CNN. Figure S4: Step-by-

step graphical diagram for the methods to calculate the absolute and relative rates in the 

construction of Australian farm dams. Figure S5: Predicted probability for a successful verification 

(true positive) for each dam in our dataset. Figure S6: Estimated rates of annual increase in dam 

densities between the years 1988 and 2015 in each State and Territory of Australia. Figure S7: 

Historical trends in farm dam size with year of construction for each State and Territory. Table S1: 

Summary table for all farm dam datasets used in this study. 
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